You are given a 0-indexedm * n integer matrix values, representing the values of m * n different items in m different shops. Each shop has n items where the j^th item in the i^th shop has a value of values[i][j]. Additionally, the items in the i^th shop are sorted in non-increasing order of value. That is, values[i][j] >= values[i][j + 1] for all 0 <= j < n - 1.
On each day, you would like to buy a single item from one of the shops. Specifically, On the d^th day you can:
Pick any shop i.
Buy the rightmost available item j for the price of values[i][j] * d. That is, find the greatest index j such that item j was never bought before, and buy it for the price of values[i][j] * d.
Note that all items are pairwise different. For example, if you have bought item 0 from shop 1, you can still buy item 0 from any other shop.
Return the maximum amount of money that can be spent on buying all m * n products.
Example 1:
1 2 3 4 5 6 7 8 9 10 11 12 13
Input: values = [[8,5,2],[6,4,1],[9,7,3]] Output: 285 Explanation: On the first day, we buy product 2 from shop 1 for a price of values[1][2] * 1 = 1. On the second day, we buy product 2 from shop 0 for a price of values[0][2] * 2 = 4. On the third day, we buy product 2 from shop 2 for a price of values[2][2] * 3 = 9. On the fourth day, we buy product 1 from shop 1 for a price of values[1][1] * 4 = 16. On the fifth day, we buy product 1 from shop 0 for a price of values[0][1] * 5 = 25. On the sixth day, we buy product 0 from shop 1 for a price of values[1][0] * 6 = 36. On the seventh day, we buy product 1 from shop 2 for a price of values[2][1] * 7 = 49. On the eighth day, we buy product 0 from shop 0 for a price of values[0][0] * 8 = 64. On the ninth day, we buy product 0 from shop 2 for a price of values[2][0] * 9 = 81. Hence, our total spending is equal to 285. It can be shown that 285 is the maximum amount of money that can be spent buying all m * n products.
Example 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Input: values = [[10,8,6,4,2],[9,7,5,3,2]] Output: 386 Explanation: On the first day, we buy product 4 from shop 0 for a price of values[0][4] * 1 = 2. On the second day, we buy product 4 from shop 1 for a price of values[1][4] * 2 = 4. On the third day, we buy product 3 from shop 1 for a price of values[1][3] * 3 = 9. On the fourth day, we buy product 3 from shop 0 for a price of values[0][3] * 4 = 16. On the fifth day, we buy product 2 from shop 1 for a price of values[1][2] * 5 = 25. On the sixth day, we buy product 2 from shop 0 for a price of values[0][2] * 6 = 36. On the seventh day, we buy product 1 from shop 1 for a price of values[1][1] * 7 = 49. On the eighth day, we buy product 1 from shop 0 for a price of values[0][1] * 8 = 64 On the ninth day, we buy product 0 from shop 1 for a price of values[1][0] * 9 = 81. On the tenth day, we buy product 0 from shop 0 for a price of values[0][0] * 10 = 100. Hence, our total spending is equal to 386. It can be shown that 386 is the maximum amount of money that can be spent buying all m * n products.
classSolution { public: longlongmaxSpending(vector<vector<int>>& values){ longlong res = 0; int m = values.size(), n = values[0].size(); priority_queue<vector<int>, vector<vector<int>>, greater<vector<int>>> pq; for (int i = 0; i < m; i++) { pq.push({values[i][n - 1], i, n - 1}); } long cur_day = 1; while (!pq.empty()) { auto tri = pq.top(); pq.pop(); int val = tri[0], row = tri[1], col = tri[2]; res += cur_day * val; if (col) { col--; pq.push({values[row][col], row, col}); } cur_day++; } return res; } };