126. Word Ladder II

126. Word Ladder II

Description

A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s1 -> s2 -> … -> sk such that:

  • Every adjacent pair of words differs by a single letter.
  • Every si for 1 <= i <= k is in wordList. Note that beginWord does not need to be in wordList.
  • sk == endWord

Given two words, beginWord and endWord, and a dictionary wordList, return all the shortest transformation sequences from beginWord to endWord, or an empty list if no such sequence exists. Each sequence should be returned as a list of the words [beginWord, s1, s2, …, sk].

Example 1:

1
2
3
4
5
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: [["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
Explanation:There are 2 shortest transformation sequences:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"

Example 2:

1
2
3
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: []
Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.

Constraints:

  • 1 <= beginWord.length <= 5
  • endWord.length == beginWord.length
  • 1 <= wordList.length <= 500
  • wordList[i].length == beginWord.length
  • beginWord, endWord, and wordList[i] consist of lowercase English letters.
  • beginWord != endWord
  • All the words in wordList are unique .
  • The sum of all shortest transformation sequences does not exceed 10^5.

Hints/Notes

  • 2025/04/13 Q1
  • bfs + dfs
  • No good solution from Leetcode or 0x3F

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class Solution {
public:
unordered_map<string, int> shortestSteps;
vector<vector<string>> res;
unordered_map<string, vector<string>> graph;

vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> words(wordList.begin(), wordList.end());
if (!words.contains(endWord)) {
return res;
}
queue<string> q;
q.push(beginWord);
int curStep = 0;
shortestSteps[beginWord] = curStep;
while (!q.empty()) {
int size = q.size();
bool finished = false;
for (int i = 0; i < size; i++) {
string curWord = q.front();
q.pop();
if (curWord == endWord) {
finished = true;
break;
}
int len = curWord.size();
for (int j = 0; j < len; j++) {
string newWord = curWord;
for (char k = 'a'; k <= 'z'; k++) {
newWord[j] = k;
if (words.contains(newWord)) {
if (!shortestSteps.contains(newWord) || shortestSteps[newWord] == curStep + 1) {
graph[newWord].push_back(curWord);
}
if (!shortestSteps.contains(newWord)) {
shortestSteps[newWord] = curStep + 1;
q.push(newWord);
}
}
}
}
}
if (finished) {
break;
}
curStep++;
}
if (!shortestSteps.contains(endWord)) {
return res;
}
vector<string> path = {endWord};
dfs(endWord, beginWord, shortestSteps[endWord], words, path);
return res;
}

void dfs(string& curWord, string& beginWord, int curStep, unordered_set<string>& words, vector<string>& path) {
if (curWord == beginWord) {
reverse(path.begin(), path.end());
res.push_back(path);
reverse(path.begin(), path.end());
return;
}
int len = curWord.size();
for (auto newWord : graph[curWord]) {
if (shortestSteps[newWord] == curStep - 1) {
path.push_back(newWord);
dfs(newWord, beginWord, curStep - 1, words, path);
path.pop_back();
}
}
}
};