63. Unique Paths II

63. Unique Paths II

Description

You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.

Return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The testcases are generated so that the answer will be less than or equal to 2 * 10^9.

Example 1:

1
2
3
4
5
6
Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

Example 2:

1
2
Input: obstacleGrid = [[0,1],[0,0]]
Output: 1

Constraints:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] is 0 or 1.

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public:
int m, n;
vector<vector<int>> dp;
static constexpr int dirs[2][2] = {{1, 0}, {0, 1}};

int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
m = obstacleGrid.size();
n = obstacleGrid[0].size();
if (obstacleGrid[0][0] || obstacleGrid[m - 1][n - 1]) {
return 0;
}
dp.resize(m, vector<int>(n, -1));
int res = dfs(0, 0, obstacleGrid);
return res;
}

int dfs(int x, int y, vector<vector<int>>& obstacleGrid) {
if (x == m - 1 && y == n - 1) {
return 1;
}
if (dp[x][y] != -1) {
return dp[x][y];
}
int& res = dp[x][y];
res = 0;
for (int k = 0; k < 2; k++) {
int dx = x + dirs[k][0], dy = y + dirs[k][1];
if (dx >= 0 && dx < m && dy >= 0 && dy < n && obstacleGrid[dx][dy] != 1) {
res += dfs(dx, dy, obstacleGrid);
}
}
return res;
}
};