1352. Product of the Last K Numbers

1352. Product of the Last K Numbers

Description

Design an algorithm that accepts a stream of integers and retrieves the product of the last k integers of the stream.

Implement the ProductOfNumbers class:

  • ProductOfNumbers() Initializes the object with an empty stream.
  • void add(int num) Appends the integer num to the stream.
  • int getProduct(int k) Returns the product of the last k numbers in the current list. You can assume that always the current list has at least k numbers.

The test cases are generated so that, at any time, the product of any contiguous sequence of numbers will fit into a single 32-bit integer without overflowing.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Input

["ProductOfNumbers","add","add","add","add","add","getProduct","getProduct","getProduct","add","getProduct"]
[[],[3],[0],[2],[5],[4],[2],[3],[4],[8],[2]]

Output

[null,null,null,null,null,null,20,40,0,null,32]

Explanation

ProductOfNumbers productOfNumbers = new ProductOfNumbers();
productOfNumbers.add(3); // [3]
productOfNumbers.add(0); // [3,0]
productOfNumbers.add(2); // [3,0,2]
productOfNumbers.add(5); // [3,0,2,5]
productOfNumbers.add(4); // [3,0,2,5,4]
productOfNumbers.getProduct(2); // return 20. The product of the last 2 numbers is 5 * 4 = 20
productOfNumbers.getProduct(3); // return 40. The product of the last 3 numbers is 2 * 5 * 4 = 40
productOfNumbers.getProduct(4); // return 0. The product of the last 4 numbers is 0 * 2 * 5 * 4 = 0
productOfNumbers.add(8); // [3,0,2,5,4,8]
productOfNumbers.getProduct(2); // return 32. The product of the last 2 numbers is 4 * 8 = 32

Constraints:

  • 0 <= num <= 100
  • 1 <= k <= 4 * 10^4
  • At most 4 * 10^4 calls will be made to add and getProduct.
  • The product of the stream at any point in time will fit in a 32-bit integer.

Follow-up: Can you implement both GetProduct and Add to work in O(1) time complexity instead of O(k) time complexity?

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class ProductOfNumbers {
public:
vector<int> preSum;

ProductOfNumbers() {
preSum.push_back(1);
}

void add(int num) {
if (num) {
preSum.push_back(preSum.back() * num);
} else {
preSum = {1};
}
}

int getProduct(int k) {
int n = preSum.size();
if (k >= n) {
return 0;
}
return preSum.back() / preSum[n - k - 1];
}
};

/**
* Your ProductOfNumbers object will be instantiated and called as such:
* ProductOfNumbers* obj = new ProductOfNumbers();
* obj->add(num);
* int param_2 = obj->getProduct(k);
*/