653. Two Sum IV - Input is a BST

653. Two Sum IV - Input is a BST

Description

Given the root of a binary search tree and an integer k, return true if there exist two elements in the BST such that their sum is equal to k, or false otherwise.

Example 1:

1
2
Input: root = [5,3,6,2,4,null,7], k = 9
Output: true

Example 2:

1
2
Input: root = [5,3,6,2,4,null,7], k = 28
Output: false

Constraints:

  • The number of nodes in the tree is in the range [1, 10^4].
  • -10^4 <= Node.val <= 10^4
  • root is guaranteed to be a valid binary search tree.
  • -10^5 <= k <= 10^5

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> inorder;

bool findTarget(TreeNode* root, int k) {
dfs(root);
int l = 0, r = inorder.size() - 1;
while (l < r) {
if (inorder[l] + inorder[r] == k) {
return true;
} else if (inorder[l] + inorder[r] > k) {
r--;
} else {
l++;
}
}
return false;
}

void dfs(TreeNode* root) {
if (!root) {
return;
}
if (root->left) dfs(root->left);
inorder.push_back(root->val);
if (root->right) dfs(root->right);
}
};