377. Combination Sum IV

377. Combination Sum IV

Description

Given an array of distinct integers nums and a target integer target, return the number of possible combinations that add up totarget.

The test cases are generated so that the answer can fit in a 32-bit integer.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.

Example 2:

1
2
Input: nums = [9], target = 3
Output: 0

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • All the elements of nums are unique .
  • 1 <= target <= 1000

Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
vector<int> dp;

int combinationSum4(vector<int>& nums, int target) {
ranges::sort(nums);
int n = nums.size();
dp.resize(target + 1, -1);
int res = dfs(target, nums);
return res;
}

int dfs(int target, vector<int>& nums) {
if (target == 0) {
return 1;
}
if (dp[target] != -1) {
return dp[target];
}
int res = 0;
for (int i = 0; i < nums.size(); i++) {
if (target >= nums[i]) {
res += dfs(target - nums[i], nums);
}
}
dp[target] = res;
return res;
}
};