2116. Check if a Parentheses String Can Be Valid

2116. Check if a Parentheses String Can Be Valid

Description

A parentheses string is a non-empty string consisting only of '(' and ')'. It is valid if any of the following conditions is true :

  • It is ().
  • It can be written as AB (A concatenated with B), where A and B are valid parentheses strings.
  • It can be written as (A), where A is a valid parentheses string.

You are given a parentheses string s and a string locked, both of length n. locked is a binary string consisting only of '0's and '1's. For each index i of locked,

  • If locked[i] is '1', you cannot change s[i].
  • But if locked[i] is '0', you can change s[i] to either '(' or ')'.

Return true if you can make s a valid parentheses string. Otherwise, return false.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
Input: s = "))()))", locked = "010100"
Output: true
Explanation: locked[1] == '1' and locked[3] == '1', so we cannot change s[1] or s[3].
We change s[0] and s[4] to '(' while leaving s[2] and s[5] unchanged to make s valid.```

**Example 2:**

```bash
Input: s = "()()", locked = "0000"
Output: true
Explanation: We do not need to make any changes because s is already valid.

Example 3:

1
2
3
4
Input: s = ")", locked = "0"
Output: false
Explanation: locked permits us to change s[0].
Changing s[0] to either '(' or ')' will not make s valid.

Example 4:

1
2
3
4
Input: s = "(((())(((())", locked = "111111010111"
Output: true
Explanation: locked permits us to change s[6] and s[8].
We change s[6] and s[8] to ')' to make s valid.

Constraints:

  • n == s.length == locked.length
  • 1 <= n <= 10^5
  • s[i] is either '(' or ')'.
  • locked[i] is either '0' or '1'.

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution {
public:
// locked = '0': we don't care what's the real char here
// locked = '1': if the s[i] == '(', we need to supply the ')' later
//
bool canBeValid(string s, string locked) {
stack<int> open, flexibility;
int n = s.size();
if (n % 2) {
return false;
}
for (int i = 0; i < n; i++) {
if (locked[i] == '0') {
flexibility.push(i);
} else {
if (s[i] == '(') {
open.push(i);
} else {
if (!open.empty()) {
open.pop();
} else if (!flexibility.empty()) {
flexibility.pop();
} else {
return false;
}
}
}
}
while (!open.empty()) {
if (flexibility.empty() || flexibility.top() < open.top()) {
return false;
} else {
flexibility.pop();
open.pop();
}
}
return flexibility.size() % 2 == 0;
}
};