1382. Balance a Binary Search Tree

1382. Balance a Binary Search Tree

Description

Given the root of a binary search tree, return a balanced binary search tree with the same node values. If there is more than one answer, return any of them .

A binary search tree is balanced if the depth of the two subtrees of every node never differs by more than 1.

Example 1:

1
2
3
Input: root = [1,null,2,null,3,null,4,null,null]
Output: [2,1,3,null,null,null,4]
<b>Explanation:</b> This is not the only correct answer, [3,1,4,null,2] is also correct.

Example 2:

1
2
Input: root = [2,1,3]
Output: [2,1,3]

Constraints:

  • The number of nodes in the tree is in the range [1, 10^4].
  • 1 <= Node.val <= 10^5

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<TreeNode*> nodes;

TreeNode* balanceBST(TreeNode* root) {
if (!root) {
return root;
}
inorderTraversal(root);

return buildTree(0, nodes.size() - 1);
}

TreeNode* buildTree(int start, int end) {
if (start > end) {
return nullptr;
}
int mid = (start + end) / 2;
TreeNode* root = nodes[mid];
root->left = buildTree(start, mid - 1);
root->right = buildTree(mid + 1, end);
return root;
}

void inorderTraversal(TreeNode* root) {
if (root->left) inorderTraversal(root->left);
nodes.push_back(root);
if (root->right) inorderTraversal(root->right);
}
};