1091. Shortest Path in Binary Matrix

1091. Shortest Path in Binary Matrix

Description

Given an n x n binary matrix grid, return the length of the shortest clear path in the matrix. If there is no clear path, return -1.

A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)) to the bottom-right cell (i.e., (n - 1, n - 1)) such that:

  • All the visited cells of the path are 0.
  • All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).

The length of a clear path is the number of visited cells of this path.

Example 1:

1
2
Input: grid = [[0,1],[1,0]]
Output: 2

Example 2:

1
2
Input: grid = [[0,0,0],[1,1,0],[1,1,0]]
Output: 4

Example 3:

1
2
Input: grid = [[1,0,0],[1,1,0],[1,1,0]]
Output: -1

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 100
  • grid[i][j] is 0 or 1

Hints/Notes

  • 2025/01/19
  • bfs
  • No solution from 0x3F

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public:
static constexpr int DIRs[8][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0},
{1, 1}, {1, -1}, {-1, -1}, {-1, 1}};

int shortestPathBinaryMatrix(vector<vector<int>>& grid) {
if (grid[0][0] == 1) {
return -1;
}
int n = grid.size();
queue<pair<int, int>> q;
int cur = 1;
q.push({0, 0});
grid[0][0] = 1;
while (!q.empty()) {
int size = q.size();
for (int i = 0; i < size; i++) {
auto [x, y] = q.front();
q.pop();
if (x == n - 1 && y == n - 1) {
return cur;
}
for (int j = 0; j < 8; j++) {
int dx = x + DIRs[j][0], dy = y + DIRs[j][1];
if (dx >= 0 && dx < n && dy >= 0 && dy < n && grid[dx][dy] == 0) {
q.push({dx, dy});
grid[dx][dy] = 1;
}
}
}
cur++;
}
return -1;
}
};