973. K Closest Points to Origin

973. K Closest Points to Origin

Description

Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0).

The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)^2 + (y1 - y2)^2).

You may return the answer in any order . The answer is guaranteed to be unique (except for the order that it is in).

Example 1:

1
2
3
4
5
6
7
Input: points = [[1,3],[-2,2]], k = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

1
2
3
Input: points = [[3,3],[5,-1],[-2,4]], k = 2
Output: [[3,3],[-2,4]]
Explanation: The answer [[-2,4],[3,3]] would also be accepted.

Constraints:

  • 1 <= k <= points.length <= 10^4
  • -10^4 <= xi, yi <= 10^4

Hints/Notes

Solution

Language: C++

quick select

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
quick_select(points, k, 0, points.size() - 1);
return vector<vector<int>>(points.begin(), points.begin() + k);
}

void quick_select(vector<vector<int>>& points, int k, int left, int right) {
int pivot = right, pivotDist = points[pivot][0] * points[pivot][0] + points[pivot][1] * points[pivot][1];
int i = left - 1;
for (int j = left; j < right; j++) {
int dist = points[j][0] * points[j][0] + points[j][1] * points[j][1];
if (dist <= pivotDist) {
swap(points[++i], points[j]);
}
}
i++;
swap(points[i], points[right]);
// from left to i, a total of i - left + 1 numbers are <= pivot
if (i - left + 1 > k) {
quick_select(points, k, left, i - 1);
} else if (i - left + 1 < k) {
quick_select(points, k - i + left - 1, i + 1, right);
}
}
};

priority queue:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
priority_queue<pair<int, int>> pq;
int n = points.size();
for (int i = 0; i < n; i++) {
int x = points[i][0], y = points[i][1], d = x * x + y * y;
pq.push({d, i});
if (pq.size() > k) {
pq.pop();
}
}
vector<vector<int>> res;
while (!pq.empty()) {
int idx = pq.top().second;
pq.pop();
res.push_back(points[idx]);
}
return res;
}
};