Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0).
The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)^2 + (y1 - y2)^2).
You may return the answer in any order . The answer is guaranteed to be unique (except for the order that it is in).
Example 1:
1 2 3 4 5 6 7
Input: points = [[1,3],[-2,2]], k = 1 Output: [[-2,2]] Explanation: The distance between (1, 3) and the origin is sqrt(10). The distance between (-2, 2) and the origin is sqrt(8). Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin. We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
1 2 3
Input: points = [[3,3],[5,-1],[-2,4]], k = 2 Output: [[3,3],[-2,4]] Explanation: The answer [[-2,4],[3,3]] would also be accepted.
voidquick_select(vector<vector<int>>& points, int k, int left, int right){ int pivot = right, pivotDist = points[pivot][0] * points[pivot][0] + points[pivot][1] * points[pivot][1]; int i = left - 1; for (int j = left; j < right; j++) { int dist = points[j][0] * points[j][0] + points[j][1] * points[j][1]; if (dist <= pivotDist) { swap(points[++i], points[j]); } } i++; swap(points[i], points[right]); // from left to i, a total of i - left + 1 numbers are <= pivot if (i - left + 1 > k) { quick_select(points, k, left, i - 1); } elseif (i - left + 1 < k) { quick_select(points, k - i + left - 1, i + 1, right); } } };
classSolution { public: vector<vector<int>> kClosest(vector<vector<int>>& points, int k) { priority_queue<pair<int, int>> pq; int n = points.size(); for (int i = 0; i < n; i++) { int x = points[i][0], y = points[i][1], d = x * x + y * y; pq.push({d, i}); if (pq.size() > k) { pq.pop(); } } vector<vector<int>> res; while (!pq.empty()) { int idx = pq.top().second; pq.pop(); res.push_back(points[idx]); } return res; } };