97. Interleaving String

97. Interleaving String

Description

Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.

An interleaving of two strings s and t is a configuration where s and t are divided into n and m substrings respectively, such that:

  • s = s1 + s2 + … + sn
  • t = t1 + t2 + … + tm
  • |n - m| <= 1
  • The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + …ort1 + s1 + t2 + s2 + t3 + s3 + …

Note: a + b is the concatenation of strings a and b.

Example 1:

1
2
3
4
5
6
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.

Example 2:

1
2
3
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.

Example 3:

1
2
Input: s1 = "", s2 = "", s3 = ""
Output: true

Constraints:

  • 0 <= s1.length, s2.length <= 100
  • 0 <= s3.length <= 200
  • s1, s2, and s3 consist of lowercase English letters.

Follow up: Could you solve it using only O(s2.length) additional memory space?

Hints/Notes

  • 2024/12/26
  • dp
  • No solution from 0x3F

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public:
vector<vector<int>> dp;

bool isInterleave(string s1, string s2, string s3) {
int m = s1.size(), n = s2.size();
if (m + n != s3.size()) {
return false;
}
dp.resize(m + 1, vector<int>(n + 1, -1));
return dfs(0, 0, s1, s2, s3);
}

bool dfs(int i, int j, string& s1, string& s2, string& s3) {
if (i == s1.size() && j == s2.size()) {
return true;
}
if (dp[i][j] != -1) {
return dp[i][j];
}
int res = 0;
if (i < s1.size() && s1[i] == s3[i + j]) {
res = dfs(i + 1, j, s1, s2, s3);
}
if (res) {
dp[i][j] = res;
return res;
}
if (j < s2.size() && s2[j] == s3[i + j]) {
res = dfs(i, j + 1, s1, s2, s3);
}
dp[i][j] = res;
return res;
}
};