42. Trapping Rain Water

42. Trapping Rain Water

Description

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.

Example 1:

1
2
3
Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

Example 2:

1
2
Input: height = [4,2,0,3,2,5]
Output: 9

Constraints:

  • n == height.length
  • 1 <= n <= 2 * 10^4
  • 0 <= height[i] <= 10^5

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int trap(vector<int>& height) {
int left = 0, right = height.size() - 1, max_left = 0, max_right = 0, res = 0;
while (left <= right) {
max_left = max(height[left], max_left);
max_right = max(height[right], max_right);
if (max_left < max_right) {
res += max_left - height[left];
left++;
} else {
res += max_right - height[right];
right--;
}
}
return res;
}
};

monotonic stack

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
int trap(vector<int>& height) {
stack<int> stk;
int n = height.size(), res = 0;
for (int i = 0; i < n; i++) {
int h = height[i];
while (!stk.empty() && height[stk.top()] < h) {
int bottom = height[stk.top()];
stk.pop();
if (stk.empty()) {
break;
}
int left = stk.top();
res += (min(h, height[left]) - bottom) * (i - left - 1);
}
stk.push(i);
}
return res;
}
};