994. Rotting Oranges

994. Rotting Oranges

Description

You are given an m x n grid where each cell can have one of three values:

  • 0 representing an empty cell,
  • 1 representing a fresh orange, or
  • 2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.

Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1.

Example 1:

1
2
Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4

Example 2:

1
2
3
Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.

Example 3:

1
2
3
Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 10
  • grid[i][j] is 0, 1, or 2.

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
public:
int orangesRotting(vector<vector<int>>& grid) {
array<array<int, 2>, 4> DIRs = {{{-1, 0}, {1, 0}, {0, -1}, {0, 1}}};
int m = grid.size(), n = grid[0].size(), left = m * n;
queue<pair<int, int>> q;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 2) {
q.emplace(i, j);
left--;
}
if (grid[i][j] == 0) {
left--;
}
}
}
if (!left) {
return 0;
}
int cur = 0;
while (!q.empty() && left) {
int size = q.size();
for (int i = 0; i < size; i++) {
auto p = q.front();
q.pop();
int x = p.first, y = p.second;
for (auto DIR : DIRs) {
int dx = x + DIR[0], dy = y + DIR[1];
if (dx >= 0 && dy >= 0 && dx < m && dy < n && grid[dx][dy] == 1) {
grid[dx][dy] = 2;
q.emplace(dx, dy);
left--;
}
}
}
cur++;
}
return left == 0 ? cur : -1;
}
};