3250. Find the Count of Monotonic Pairs I

3250. Find the Count of Monotonic Pairs I

Description

You are given an array of positive integers nums of length n.

We call a pair of non-negative integer arrays (arr1, arr2) monotonic if:

  • The lengths of both arrays are n.
  • arr1 is monotonically non-decreasing , in other words, arr1[0] <= arr1[1] <= ... <= arr1[n - 1].
  • arr2 is monotonically non-increasing , in other words, arr2[0] >= arr2[1] >= ... >= arr2[n - 1].
  • arr1[i] + arr2[i] == nums[i] for all 0 <= i <= n - 1.

Return the count of monotonic pairs.

Since the answer may be very large, return it modulo 10^9 + 7.

Example 1:

1
2
3
Input: nums = [2,3,2]

Output: 4

Explanation:

The good pairs are:

  • ([0, 1, 1], [2, 2, 1])
  • ([0, 1, 2], [2, 2, 0])
  • ([0, 2, 2], [2, 1, 0])
  • ([1, 2, 2], [1, 1, 0])

Example 2:

1
2
3
Input: nums = [5,5,5,5]

Output: 126

Constraints:

  • 1 <= n == nums.length <= 2000
  • 1 <= nums[i] <= 50

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public:
vector<map<int, int>> dp;
vector<int> arr;

int countOfPairs(vector<int>& nums) {
int n = nums.size();
dp.resize(n, map<int, int>());
long long res = 0;
for (int i = 0; i <= nums[0]; i++) {
res += traverse(0, i, nums);
}
return res % 1000000007;
}

// dp[index][arr1]: at index, when the num1 is equal to arr1, the number of
// valid monotonic pairs
int traverse(int index, int arr1, vector<int>& nums) {
if (index == nums.size() - 1) {
return 1;
}
if (dp[index].contains(arr1)) {
return dp[index][arr1];
}
long long res = 0;
int arr2 = nums[index] - arr1;
for (int i = max(arr1, nums[index + 1] - arr2); i <= nums[index + 1];
i++) {
res += traverse(index + 1, i, nums);
res %= 1000000007;
}
dp[index][arr1] = (int)res;
return res;
}
};