494. Target Sum

494. Target Sum

Description

You are given an integer array nums and an integer target.

You want to build an expression out of nums by adding one of the symbols '+' and '-' before each integer in nums and then concatenate all the integers.

  • For example, if nums = [2, 1], you can add a '+' before 2 and a '-' before 1 and concatenate them to build the expression "+2-1".

Return the number of different expressions that you can build, which evaluates to target.

Example 1:

1
2
3
4
5
6
7
8
Input: nums = [1,1,1,1,1], target = 3
Output: 5
Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3.
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

Example 2:

1
2
Input: nums = [1], target = 1
Output: 1

Constraints:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
// the problem can be transformed into subA - subB = target
// subA = target + subB => 2subA = target + sum
// subA = (target + sum) / 2
int sum = 0;
for (int& num : nums) {
sum += num;
}
int res = (target + sum) / 2;
if ((target + sum) % 2 || (target + sum) < 0) {
return 0;
}
vector<vector<int>> dp(nums.size() + 1, vector<int>(res + 1, 0));
dp[0][0] = 1;
// The meaning of dp[i][j]: with the first 0 ~ i items, how many ways we
// can form j
// To get to dp[i][j], we need dp[i][j - nums[i]] and dp[i - 1][j]
// when i = 0, the only way to form j is then nums[0] == j
for (int i = 1; i <= nums.size(); i++) {
for (int j = 0; j <= res; j++) {
if (j >= nums[i - 1]) {
dp[i][j] += dp[i - 1][j - nums[i - 1]];
}
dp[i][j] += dp[i - 1][j];
}
}
return dp[nums.size()][res];
}
};