516. Longest Palindromic Subsequence

516. Longest Palindromic Subsequence

Description

Given a string s, find the longest palindromic subsequence ‘s length in s.

A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.

Example 1:

1
2
3
Input: s = "bbbab"
Output: 4
Explanation: One possible longest palindromic subsequence is "bbbb".

Example 2:

1
2
3
Input: s = "cbbd"
Output: 2
Explanation: One possible longest palindromic subsequence is "bb".

Constraints:

  • 1 <= s.length <= 1000
  • s consists only of lowercase English letters.

Hints/Notes

Solution

Language: C++

More intuitive way

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
vector<vector<int>> dp;

int longestPalindromeSubseq(string s) {
int n = s.size();
dp.resize(n, vector<int>(n, -1));
for (int i = 0; i < n; i++) {
dp[i][i] = 1;
}
return dfs(s, 0, n - 1);
}

int dfs(string& s, int start, int end) {
if (start > end) {
return 0;
}
if (dp[start][end] != -1) {
return dp[start][end];
}
if (s[start] == s[end]) {
dp[start][end] = 2 + dfs(s, start + 1, end - 1);
} else {
dp[start][end] = max(dfs(s, start + 1, end), dfs(s, start, end - 1));
}
return dp[start][end];
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int i = 0; i < n; i++) {
dp[i][i] = 1;
}
int res = 1;
// because for the state transition
// dp[i][j] requires value at i + 1 and/or j - 1
// so the i is iterated reversely
for (int i = n - 1; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
res = max(res, dp[i][j]);
}
}
return res;
}
};