1008. Construct Binary Search Tree from Preorder Traversal

1008. Construct Binary Search Tree from Preorder Traversal

Description

Given an array of integers preorder, which represents the preorder traversal of a BST (i.e., binary search tree), construct the tree and return its root.

It is guaranteed that there is always possible to find a binary search tree with the given requirements for the given test cases.

A binary search tree is a binary tree where for every node, any descendant of Node.left has a value strictly less than Node.val, and any descendant of Node.right has a value strictly greater than Node.val.

A preorder traversal of a binary tree displays the value of the node first, then traverses Node.left, then traverses Node.right.

Example 1:

1
2
Input: preorder = [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]

Example 2:

1
2
Input: preorder = [1,3]
Output: [1,null,3]

Constraints:

  • 1 <= preorder.length <= 100
  • 1 <= preorder[i] <= 1000
  • All the values of preorder are unique .

Hints/Notes

  • 2024/07/03
  • binary search tree
  • No solution from 0x3F

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
TreeNode* bstFromPreorder(vector<int>& preorder) {
if (preorder.size() == 0) {
return nullptr;
}
if (preorder.size() == 1) {
return new TreeNode(preorder[0]);
}

TreeNode* root = new TreeNode(preorder[0]);
int i;
for (i = 0; i < preorder.size() && preorder[i] <= root->val; i++) {
}
vector<int> l(preorder.begin() + 1, preorder.begin() + i);
vector<int> r(preorder.begin() + i, preorder.end());
root->left = bstFromPreorder(l);
root->right = bstFromPreorder(r);
return root;
}
};