1161. Maximum Level Sum of a Binary Tree

1161. Maximum Level Sum of a Binary Tree

Description

Given the root of a binary tree, the level of its root is 1, the level of its children is 2, and so on.

Return the smallest level x such that the sum of all the values of nodes at level x is maximal .

Example 1:

1
2
3
4
5
6
7
Input: root = [1,7,0,7,-8,null,null]
Output: 2
Explanation:
Level 1 sum = 1.
Level 2 sum = 7 + 0 = 7.
Level 3 sum = 7 + -8 = -1.
So we return the level with the maximum sum which is level 2.

Example 2:

1
2
Input: root = [989,null,10250,98693,-89388,null,null,null,-32127]
Output: 2

Constraints:

  • The number of nodes in the tree is in the range [1, 10^4].
  • -10^5 <= Node.val <= 10^5

Hints/Notes

  • binary tree

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
int maxLevelSum(TreeNode* root) {
int maxVal = INT_MIN;
int minLvl = -1;
queue<TreeNode*> q;
if (root)
q.push(root);
int level = 1;
while (!q.empty()) {
int n = q.size(), sum = 0;
for (int i = 0; i < n; i++) {
TreeNode* cur = q.front();
q.pop();
sum += cur->val;
if (cur->left)
q.push(cur->left);
if (cur->right)
q.push(cur->right);
}
if (sum > maxVal) {
maxVal = sum;
minLvl = level;
}
level++;
}
return minLvl;
}
};