865. Smallest Subtree with all the Deepest Nodes

865. Smallest Subtree with all the Deepest Nodes

Description

Given the root of a binary tree, the depth of each node is the shortest distance to the root.

Return the smallest subtree such that it contains all the deepest nodes in the original tree.

A node is called the deepest if it has the largest depth possible among any node in the entire tree.

The subtree of a node is a tree consisting of that node, plus the set of all descendants of that node.

Example 1:

1
2
3
4
5
Input: root = [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation: We return the node with value 2, colored in yellow in the diagram.
The nodes coloured in blue are the deepest nodes of the tree.
Notice that nodes 5, 3 and 2 contain the deepest nodes in the tree but node 2 is the smallest subtree among them, so we return it.

Example 2:

1
2
3
Input: root = [1]
Output: [1]
Explanation: The root is the deepest node in the tree.

Example 3:

1
2
3
Input: root = [0,1,3,null,2]
Output: [2]
Explanation: The deepest node in the tree is 2, the valid subtrees are the subtrees of nodes 2, 1 and 0 but the subtree of node 2 is the smallest.

Constraints:

  • The number of nodes in the tree will be in the range [1, 500].
  • 0 <= Node.val <= 500
  • The values of the nodes in the tree are unique .

Note: This question is the same as 1123: https://leetcode.com/problems/lowest-common-ancestor-of-deepest-leaves/

Hints/Notes

  • binary tree

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
TreeNode* res;
int maxDepth = -1;

TreeNode* subtreeWithAllDeepest(TreeNode* root) {
if (!root) {
return root;
}

traverse(root, 0);
return res;
}

int traverse(TreeNode* root, int depth) {
if (!root) {
return depth - 1;
}

if (depth > maxDepth) {
maxDepth = depth;
res = root;
}

int left = traverse(root->left, depth + 1);
int right = traverse(root->right, depth + 1);

if (left == right && left == maxDepth) {
res = root;
}

return left > right ? left : right;
}
};