1026. Maximum Difference Between Node and Ancestor

1026. Maximum Difference Between Node and Ancestor

Description

Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.

A node a is an ancestor of b if either: any child of a is equal to bor any child of a is an ancestor of b.

Example 1:

1
2
3
4
5
6
7
8
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.

Example 2:

1
2
Input: root = [1,null,2,null,0,3]
Output: 3

Constraints:

  • The number of nodes in the tree is in the range [2, 5000].
  • 0 <= Node.val <= 10^5

Hints/Notes

  • back tracking

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
map<int, int> s;
int res = 0;

int maxAncestorDiff(TreeNode* root) {
traverse(root);
return res;
}

void traverse(TreeNode* root) {
if (!root) {
return;
}
s[root->val]++;
int minVal = s.begin()->first;
int maxVal = s.rbegin()->first;
res = max(res, abs(maxVal - minVal));
traverse(root->left);
traverse(root->right);
s[root->val]--;
if (s[root->val] == 0) {
s.erase(root->val);
}
}
};