938. Range Sum of BST

938. Range Sum of BST

Description

Given the root node of a binary search tree and two integers low and high, return the sum of values of all nodes with a value in the inclusive range [low, high].

Example 1:

1
2
3
Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.

Example 2:

1
2
3
Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.

Constraints:

  • The number of nodes in the tree is in the range [1, 2 * 10^4].
  • 1 <= Node.val <= 10^5
  • 1 <= low <= high <= 10^5
  • All Node.val are unique .

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
int rangeSumBST(TreeNode* root, int low, int high) {
if (!root) {
return 0;
}
int res = 0;

if (root->val >= low && root->val <= high) {
res += root->val;
}

if (root->val > low) {
res += rangeSumBST(root->left, low, high);
}

if (root->val < high) {
res += rangeSumBST(root->right, low, high);
}

return res;
}
};