124. Binary Tree Maximum Path Sum

124. Binary Tree Maximum Path Sum

Description

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once . Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node’s values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

Example 1:

1
2
3
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

1
2
3
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:

  • The number of nodes in the tree is in the range [1, 3 * 10^4].
  • -1000 <= Node.val <= 1000

Hints/Notes

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
int res = INT_MIN;

int maxPathSum(TreeNode* root) {
traverse(root);

return res;
}

int traverse(TreeNode* root) {
int ans = 0;
if (!root) {
return ans;
}

ans += root->val;

int left = traverse(root->left);
int right = traverse(root->right);

res = max(res, root->val + left + right);

ans += max(left, right);

return max(0, ans);
}
};