101. Symmetric Tree

101. Symmetric Tree

Description

Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).

Example 1:

1
2
Input: root = [1,2,2,3,4,4,3]
Output: true

Example 2:

1
2
Input: root = [1,2,2,null,3,null,3]
Output: false

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • -100 <= Node.val <= 100

Follow up: Could you solve it both recursively and iteratively?

Hints/Notes

  • N/A

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (!root) {
return true;
}

return isMirrorTree(root->left, root->right);
}

bool isMirrorTree(TreeNode* p, TreeNode* q) {
if (!p && !q) {
return true;
}

if (!p || !q) {
return false;
}

if (p->val != q->val) {
return false;
}

return isMirrorTree(p->left, q->right) &&
isMirrorTree(p->right, q->left);
}
};