3117. Minimum Sum of Values by Dividing Array
3117. Minimum Sum of Values by Dividing Array
Description
You are given two arrays nums and andValues of length n and m respectively.
The value of an array is equal to the last element of that array.
You have to divide nums into m disjoint contiguous subarrays such that for the i^th subarray [li, ri], the bitwise AND of the subarray elements is equal to andValues[i], in other words, nums[li] & nums[li + 1] & ... & nums[ri] == andValues[i] for all 1 <= i <= m, where & represents the bitwise AND operator.
Return the minimum possible sum of the values of the m subarrays nums is divided into. If it is not possible to divide nums into m subarrays satisfying these conditions, return -1.
Example 1:
1 | Input: nums = [1,4,3,3,2], andValues = [0,3,3,2] |
Example 2:
1 | Input: nums = [2,3,5,7,7,7,5], andValues = [0,7,5] |
Example 3:
1 | Input: nums = [1,2,3,4], andValues = [2] |
Constraints:
1 <= n == nums.length <= 10^41 <= m == andValues.length <= min(n, 10)1 <= nums[i] < 10^50 <= andValues[j] < 10^5
Hints/Notes
- top-down dp
Solution
Language: C++
1 | class Solution { |