918. Maximum Sum Circular Subarray
918. Maximum Sum Circular Subarray
Description
Difficulty: Medium
Related Topics: Array, Divide and Conquer, Dynamic Programming, Queue, Monotonic Queue
Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].
A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.
Example 1:
1 | Input: nums = [1,-2,3,-2] |
Example 2:
1 | Input: nums = [5,-3,5] |
Example 3:
1 | Input: nums = [-3,-2,-3] |
Constraints:
n == nums.length- 1 <= n <= 3 * 104
- -3 * 104 <= nums[i] <= 3 * 104
Hints/Notes
- preSum + monotonic queue
Solution
Language: C++
1 | class Solution { |