918. Maximum Sum Circular Subarray

918. Maximum Sum Circular Subarray

Description

Difficulty: Medium

Related Topics: Array, Divide and Conquer, Dynamic Programming, Queue, Monotonic Queue

Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.

A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].

A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.

Example 1:

1
2
3
Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.

Example 2:

1
2
3
Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.

Example 3:

1
2
3
Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.

Constraints:

  • n == nums.length
  • 1 <= n <= 3 * 104
  • -3 * 104 <= nums[i] <= 3 * 104

Hints/Notes

  • preSum + monotonic queue

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    int maxSubarraySumCircular(vector<int>& nums) {
        vector<intpreSum(nums.size() * 2 + 10);
        for (int i = 1; i < preSum.size(); i++) {
            preSum[i] = preSum[i - 1] + nums[i % nums.size()];
        }
        deque<int> minQ;
        int left = 1, right = 1, res = INT_MIN;
        while (right < preSum.size()) {
            res = max(res, preSum[right] - (minQ.empty() ? 0 : minQ.front()));
            if (right - left == nums.size()) {
                if (minQ.front() == preSum[left]) {
                    minQ.pop_front();
                }
                left++;
            }
            while (!minQ.empty() && minQ.back() > preSum[right]) {
                minQ.pop_back();
            }
            minQ.push_back(preSum[right]);
            right++;
        }
        return res;
    }
};