918. Maximum Sum Circular Subarray
918. Maximum Sum Circular Subarray
Description
Difficulty: Medium
Related Topics: Array, Divide and Conquer, Dynamic Programming, Queue, Monotonic Queue
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
1 | Input: nums = [1,-2,3,-2] |
Example 2:
1 | Input: nums = [5,-3,5] |
Example 3:
1 | Input: nums = [-3,-2,-3] |
Constraints:
n == nums.length
- 1 <= n <= 3 * 104
- -3 * 104 <= nums[i] <= 3 * 104
Hints/Notes
- preSum + monotonic queue
Solution
Language: C++
1 | class Solution { |