622. Design Circular Queue

622. Design Circular Queue

Description

Difficulty: Medium

Related Topics: Array, Linked List, Design, Queue

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle, and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Implement the MyCircularQueue class:

  • MyCircularQueue(k) Initializes the object with the size of the queue to be k.
  • int Front() Gets the front item from the queue. If the queue is empty, return -1.
  • int Rear() Gets the last item from the queue. If the queue is empty, return -1.
  • boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
  • boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
  • boolean isEmpty() Checks whether the circular queue is empty or not.
  • boolean isFull() Checks whether the circular queue is full or not.

You must solve the problem without using the built-in queue data structure in your programming language.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]

Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4

Constraints:

  • 1 <= k <= 1000
  • 0 <= value <= 1000
  • At most 3000 calls will be made to enQueue, deQueueFrontRearisEmpty, and isFull.

Hints/Notes

  • use pointer or queue

Solution

Language: C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class MyCircularQueue {
public:
struct Node {
Node* next;
int val;
Node(int val) : val(val), next(nullptr) {}
};

Node *head, *tail;
int size_;
int count_;

MyCircularQueue(int k) {
head = nullptr;
tail = nullptr;
size_ = k;
count_ = 0;
}

bool enQueue(int value) {
if (count_ >= size_) {
return false;
}
count_++;
Node* node = new Node(value);
if (!head) {
head = node;
tail = node;
} else {
tail->next = node;
tail = tail->next;
tail->next = head;
}
return true;
}

bool deQueue() {
if (!head) {
return false;
}
count_--;
Node* tmp = head;
if (head == tail) {
head = nullptr;
tail = nullptr;
} else {
head = head->next;
tail->next = head;
}
delete(tmp);
return true;
}

int Front() {
return head ? head->val : -1;
}

int Rear() {
return tail ? tail->val : -1;
}

bool isEmpty() {
return count_ == 0;
}

bool isFull() {
return count_ == size_;
}
};

/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue* obj = new MyCircularQueue(k);
* bool param_1 = obj->enQueue(value);
* bool param_2 = obj->deQueue();
* int param_3 = obj->Front();
* int param_4 = obj->Rear();
* bool param_5 = obj->isEmpty();
* bool param_6 = obj->isFull();
*/